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Integral representations for Markov systems have been given under various
hypotheses. It is shown that two of these representations do not hold in general,
and an improved version is given which is more general than existing results. The
proof is based on a number of new results concerning weak Markov systems which
may be of independent interest. © 1985 Academic Press, Inc.

O. INTRODUCTION

Let M be a subset of the real line IR of cardinality ~ n + 2,
F(M) = {J:M--+IR}, fo,fl, ...,fnEF(M) and Ui=span{Jo, ...,fJ for
i = 0, 1,..., n. fo ,...,fn is called a (weak) Cebysev system-and Un is called a
(weak) Haar space-iff for no f E Un \ {O} there exist points to, ..., tn+ 1 E M
with to<'" <tn+ 1 and (-I)if(tJ~O ((-I)if(tJ>O) for i=
0, 1,..., n + 1. An equivalent formulation is that det(fi( tj )) has strictly
(weakly) constant sign for every choice to, ..., tnE M with to < ... < tn (see
[10] ).

fo, ...,fn is called a (weak) Markov system ifffo, ...,/' is a (weak) Cebysev
system for i = 0, 1,... , n. If, in addition, fo == 1, we speak of a normed (weak)
Markov system.

In 1965, Rutman [2] gave the following integral representation for nor
med Markov systems with only hints of the proof:

THEOREM 1. If M is an open interval and Un is spanned by a normed
Markov system of right-continuous functions, there exists a basis go,· .. , gn of
Un and right-continuous strictly increasing functions WI'"'' W nE F( M) and
c E M such that for all x E M one has
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go(x) == 1

g,(x)=rdw,(td
c
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It was observed by the author (see [3]) and independently by Zalik [6]
that there are counterexamples to Theorem 1. Zalik [6] gave a more com
plicated integral representation under weaker hypotheses. His proof is
based on a well-known Gauss kernel approximation for Markov systems
by smooth Markov systems for which Rutman's representation holds.
However, there are counterexamples to this representation, too, as will be
shown in the next section.

Our main result is a corrected version of this integral representation
which at the same time is more general in that it requires weaker
hypotheses on M and holds for a wide class of weak Markov systems. Our
proof does not use the Gauss kernel approximation but is based on several
new properties of weak Markov systems some of which are analogous to
the relative differentiability of Markov systems derived in [9].

1. AN EXAMPLE

We start with a

DEFINITION. M has property (B) if it has no smallest or largest element
and if for each pair x, y E M with x < y there is a Z E M with x < Z < y. In
[6], essentially the following result is stated:

THEOREM 2. Let M be a nondenumerable set with property (B) and
c E M. Let Un be spanned by a normed Markov system.

(a) Then there exist a basis go, ..., gn of Un> a subset B of M such that
M\B is denumerable, a strictly increasing function hE F(M) and strictly
increasing functions w" ..., wnEF((inf h(M), sup h(M)) with w;(h(c))=O,
i = 1,... , n, such that for all x E B one has
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Moreover, the w/s are uniquely determined a.e. by h, g!>..., gn'

(b) If, in addition, M is a dense subset of an open interval, one may
choose h(x) = x for x E M.

Statement (b) implies that Rutman's result is correct for all but
denumerably many points of M. We consider the following

EXAMPLE. Let a normed Markov system on M = IR be defined by

t 2

f2(t) ="2

(t + 1)2

2

for t < 1

for t~ 1

for t < 1

for t~ 1.

After multiplication with suitable constants we have

and for some IX, p, YE IR.

According to Theorem 2, we choose h(x) == x and c = 0. The integral
representation implies IX = P= 0, so g 1 = fl ,

and

for t < 1

for t> 1

Fromf;(x) = WI(X) for x"# 1 follows y = 0, so g2 = f2 and W2(X) = wl(x) for
x"# 1. As WI and W2 are strictly increasing, we have wl(l), w2(l)E {l, 2}.
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But this implies

for x < 1

for x~1,ifwz(1)=1

for x~ 1, if wz(1) = 2.

2

(x+1)Z 1

2 2

(x+1)Z 1
= 2 +2

fz(x)=fXfl dWz(tz)dw,(td=rwz(t)dw,(t)
o 0 0

Xz

So we get a contradiction for every x~ 1, i.e., for a nondenumerable set
of points. The reason why Theorem 2 does not hold is that jump discon
tinuities like the one considered cannot be dealt with appropriately by
repeated Riemann integrations.

2. RESULTS

We shall call a weak Haar space V c F(M) nondegenerate iff for every
aEM, the spaces VI(-OO,a)"M and VI(a,OO)"M have the same dimension as
V.' A weak Markov system 10'/' ""'/n E F(M) is called nondegenerate iff
Vn is nondegenerate (this implies that each Vi' 0~ i~ n, is nondegenerate).
If V c F(M) is a nondegenerate Haar space of positive dimension, one
obviously has inf M rt M, sup M rt M. Our main result is

THEOREM 3. Let fo, f, ,..., fn E F(M) be a nondegenerate normed weak
Markov system. Then there exists a basis go,..., gn of Vn, a strictly increasing
function hE F(M), continuous increasing functions w, ,..., Wn defined on l: =
(inf h(M), sup h(M)) and CEl such that for all XEM we have

lOur definition of degeneracy is slightly different from the definition used by Zwick [11].
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COROLLARY 3. Let the hypotheses of Theorem 3 be fulfilled, A eM a set
with property (B) and fo, fl ,...,fn a normed Markov system on A. Then the
W h ... , wnfrom Theorem 3 may be chosen such that their restrictions to A are
strictly increasing.

Remarks. (1) Even if M is an open interval and fo '/1>"" fn a Markov
system we cannot assume h to be the identity function.

(2) It is easy to show that if go, gl,'''' gn have a representation (*),
where h and WI'"'' W n have the properties stated in Corollary 3'
(Theorem 3), they form a normed (weak) Markov system on M (see [7]).

(3) If M does not contain inf M, sup M, any (weak) Haar space in
F(M) has a (weak) Markov basis (see [7,5], also [10]).

(4) Any Markov system fo, ...'/n may be transformed into a normed
Markov system by division by fo.

(5) Cebysev systems defined on arbitrary totally ordered sets may be
transformed to equivalent systems defined on subsets of lIt This transfor
mation preserves property (B) (see [4]).

(6) Zalik has communicated a different proof of Theorem 3 based on a
new embedding property of weak Haar spaces [8].

For the proof of Theorem 3, we need some notations and a number of
auxiliary results. For kEN, let Llk(M) = {(t l ,..., tk)EMk I t l < ... <td.

DEFINITION. An f E F(M) has a strong oscillation of length k iff there
exist (tl>"" tk)ELlAM) and hE {-f,f} such that

h(td<h(tz»h(t3)<h(t4 » ....

The following is a generalization of a theorem of Zwick [12], which in
turn is a generalization of Theorem 8.8 in [10]:

LEMMA I. Let fo, ...,fn E F(M) be linearly independent with fo = 1. Then
the following properties are equivalent:

(a) fo, ...,fn is a (normed) weak Markov system.

(b) No f E Un has a strong oscillation of length n + 2.

Proof (b) = (a) By Theorem 8.3 in [10] there exist normed i-dimen
sional spaces Vi' i = I,..., n, with VI c Vz C ... C Vn C Un such that no
f E Vi has a strong oscillation of length i + 1. Each Vi is a weak Haar space.

(a)=(b) For n=O the statement is trivial.

n-l =n. Suppose there exist an hE Un\Un_ 1 and (to, ..·, tn+dE
Lln+z(M) with h(to) < h(tl) > h(tz) <h(t3) > .... Let W= Unl {to, ..• tn+tl' If W
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has dimension < n + 1, different (uo, ..., Un + d E L1 n+ 2(M) and liE Un \ Un_ I
may be constructed with dim Un I{uo •...• un+d = n + 1 and Ii(uo) < Ii(ud >
Ii(U2) < .... This construction is completely analogous to the proof of
Lemma 4.1 in [10], part "(b) =:;> (a)," Case 2.

So without loss of generality we assume dim W = n + 1. For each fEW,
let sf be the linear spline with knots to,··., tn+I interpolating f in these
knots. Clearly X: = {sf IfEW} is an (n + 1)-dimensional normed weak
Haar space of continuous functions on an interval and contains an element
with a strong oscillation of length n + 2. This, however, contradicts Zwick's
result [12] which states Lemma 1 for continuous functions defined on an
interval.

LEMMA 2. Let fo,fl> ...,fn be a normed weak Markov system,
Po:= -00, Pn+2:= 00, andfE Un with a strong oscillation of length n+ 1
in (PI> ,Pn+dEL1n+I(M), and x,YEMn(pv,pv+d for some
VE {O, 1, , n+ 1} withf(x)=f(y). Then h(x)=h(y) holds for all hE Un-

Proof Otherwise for some S E IR, f + sh would have a strong oscillation
of length n+2 or n+3 inpI""'Pv,x, y,Pv+I,...,Pn+l (n+2 if x<y<PI
or Pn+1 <x<y).

LEMMA 3. Let fo, fl ,..., fn EF( M) be a nondegenerate normed weak
Markov system. If fl is constant on a subset S eM, every fE Un is constant
on S.

Proof For n = 0 and n = 1 the statement is trivial. Assume it holds for
n-l~O. There are I, rEM with Se[/,r] for otherwise UI would be
degenerate. As Un-I is nondegenerate there exists agE Un-I with a strong
oscillation of length n in (t 1,... , tn)E L1 n(M) with tn< I and g(tn _d < g(tn).
By Lemma 1 g is increasing on M n [tn, (0). Let u ES be fixed. Let So > 0
such that g := g + sofl has a strong oscillation of length in t I,..., tn_ I, u,
and g(tn- d <g(u). There is a tn+IE M n (r, 00) with g(u) <g(tn+ I), and g
is constant on S by induction hypothesis. If there were f E Un and points
x, yES with f(x) =F f(y) say x < y and f(x) > 0 > f(y) without loss of
generality, g+ sf would have a strong oscillation of length n + 2 in
t1, ..., tn_ I, x, y, tn+ I for small s > 0 in contradiction to Lemma 1.

DEFINITION. For hE F(M) and a EM, let the right-hand limit of h in a
with respect to M be defined by M -lim x ~ a + h(x) = IX itT for every s > 0,
there is a ZEM with a<z and Ih(x)-IXI<s for all xE(a,z]nM. The
left-hand limit is defined analogously.

DEFINITION. Let fo, fl ,..., fn EF(M) be a normed weak nondegenerate
Markov system, and for a E M let
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La = {XE M n (- 00, a) If,(y) # f,(x) for all yE (- 00, x) nM},

Ra= {xEMn(a, 00) If,(y)#f,(x)forallyE(x, oo)nM},

ra = inf R a •

Then the left and right relative derivatives (D _f)(a) and (D +f)(a) of
f E Un in a E M with respect to f, are defined by

and

if the corresponding expressions exist.

THEOREM 4. Let fo, fl ,00" fn E F( M) be a nondegenerate normed weak
Markov system. Then

(a) for all aEM andfE Un there exist (D+f)(a) and (D_f)(a);

(b) D + fl '00" D + fn and D _ f, '00" D _ fn form nondegenerate normed
weak Markov systems;

(c) for P = {x E M I (D +f)(x) # (D -f)(x) for some fE Un} there
exist strictly increasing mappings i, s with s E F(M) and i: P --+ lR\s(M) such
that a nondegenerate normed weak Markov system <PI '00" <Pn E F(s(M) u i(P))
is defined by

<Pv(x) = (D +fv)(S-I(X))

= (D -fJU-I(x))

for xEs(M)

for x E i(P), v = 1'00" n.

Proof For n = 1, the statements are trivial.

n - 1 :::> n ~ 2. (a) Obviously we may restrict our attention to D + f
For a < raE Ra, the statement is trivial. For a < ra¢ Ra, the statement
follows from (D+f)(a)=(D+f)(ra). Now let a=ra. Without loss of
generality let fl be increasing, f(a)=f,(a)=O and f be nonnegative on
M n (a, c) for a suitably chosen c E M n (a, 00).
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We first suppose

. f(x)
M- hm sup--= 00.

x~a+ fl(x)

By induction hypothesis for every g E Un _ 1 there exists

M _ lim g(x) - g(a).
x~a+ fl(x)
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For all gE Un_I\{O} with g(a)=O and xEMn(a, (0) with g(x)#O we
have

f(x) f(x) g(x)

fl(x) = g(x) jl(x)"

As Un _ I is a nondegenerate weak Haar space there exist agE Un _ I and
(tl'... ' tn)ELln(M) with tn=a and

g(ti) = (_l)n- i

=0
for i=l, ...,n-l

for i=n.

By Lemma 1 g is increasing on M n [a, (0). By Lemma 2 there exists a
dE M n (a, (0) such that g is strictly increasing on M n [a, d]. By induc
tion hypothesis we have

thus

. f(x)
M - hm sup -(-) = 00.

x~a+ g X

So for all e> 0, we have

M- I
· . f(g-ef)(x)
1m m = -00.

x ~a+ g(x)

Thus, there is a tn+I E(a, a +d) n M with (g- ef)(tn+ I) < °< (g - ef)(d).
So for sufficiently small e > 0, g - ef has a strong oscillation of length n + 2
in t 1>••• , tn + 1> d in contradiction to Lemma 1. Now suppose

f3 M I· . ff(x) M I· f(x)
:= - lmm f-()< - lmsup-- =:y.

x~a+ I X x~a+ fl(x)
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has a strong alternation of arbitrary length, a contradiction.

(b) This part of the proof is completely analogous to the proof of
Theorem 11.3(b) in [10].

(c) We start with a lemma the proof of which is omitted since it is com
pletely analogous to the proof of Lemma 11.1 in [10]:

LEMMA 4. Let fo, fl ,..., fn E F(M) be a nondegenerate normed weak
Markov system. Then for a, bE M, every f E Un is bounded on M n [a, b].

For every fE Un' D +f and D-f are piecewise monotone and bounded
on every subset M n [a, b], a, bE M. So they are discontinuous in at most
countably many points, and the set

is countable for every f E Un' From P = PI2 U PI) u ... U Pin follows that P
is countable, say P= {PI' Pz, ... }.

Let dE M be arbitrarily fixed, and s EF(M) be defined by

xc

s(x)=x+ L 2- V

v = 1
p, E (d,x]

00

=x- I 2- V

v~ I
P,E (x,d]

for x>d

for x~d.

Thus s(M) has a "gap" of length 2 - v left of each s(Pv). Let i: P ~ IR be
defined by

i(x) = !(s(x) + sup{ (- 00, s(x)) ns(M)}) for XEP.

if tj Ei(P) for j = 1,..., n + 1.

So i inserts one point in the middle of each "gap" left of an s(Pv). So
<PI'"'' <Pn are well defined. Suppose there exist a <P Espan {<Pb'''' <Pn},
corresponding to anfE Un' and (t l ,... , tn+dEAn+l(s(M)ui(P)) with

(-I)j f(S-l(Uj ))- f(S-l(tJ) >0
fl(S-l(Uj))- fl(s l(tj ))

(_I)jf(s-I(Uj!)-fU.-
I
(tj )) >0

fl(S-l(UJ)) - f(l l(tj ))
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As fl is monotone, the set of points in M corresponding to
{t\> U\> ..., tn+l , un+d contains at least n+2 points forming a strong
oscillation of f, a contradiction to Lemma 1.

For the proof of Theorem 3 we need the following result, which may be
of some independent interest:

LEMMA 5. Under the hypotheses of Lemma 4, every f E Un is absolutely
continuous with respect to fl on M n [a, b].

Proof By Lemmas 1 and 4 every f E Un may be continuously extended
to Mn(infM, supM). Now let IE Un and E:= Mn[a,b]. Because of
Lemma 3 it is sufficient to show that

I(y)- I(x)
q(x, y):= II(Y)- II(x)

is bounded for x, y EE with II (x) # II (y). For n ~ 1, the statement is
obvious.

n - 1-=n. Suppose there exist {Xdk~ I' {ydk~ I in E with Xk < Yk
and q(Xb Yk) --+ 00 for k --+ 00. As I is bounded (Lemma 4) we have
II(yd - II(xd --+ O(k --+ 00).

Without loss of generality let x = limk ~ 00 Xk and Y = limk ~ 00 Yk' As II is
monotone, say increasing, we have II (x) =II (y), so III [x,y] n M is constant.
By Lemma 3, the set [x, y] may be shrunk to one point, i.e., x = y. As
Un _ I is nondegenerate, there exist g E Un _ I and t I,..., tnEM with
t1< ... < tn < x and g(t;) = (_l)n-i for i = 1,..., n. Thus g is increasing on
En (tn' 00). Let eo> 0 be such that g: = g+ eo/l E Un-I has a strong
oscillation in t I,..., tn_ I' x, and g(tn_ l ) < g(x). There is a tn+ I EM n (x, 00)
with g(x) < g(tn+ d. Let Ct. be such that!: = g- Ct.1 has a strong oscillation
in t l ,... , tn-I and!(tn_d <!(x) <!(tn+ d·

For k sufficiently large, we have tn-l<xk<Yk<tn+1>
!(tn-I) < min{/(xd, !(Yk)} ~ max{/(xk)' !(Yk)} <!(tn+ I), and by induc
tion hypothesis

!(Yk)-!(xk ) _ g(yd-g(xd ( )<0
II(yd- II(xd - II(Yk)- II(xd -Ct.q Xb Yk ,

so !(Xk) >!(yd. But then! has a strong oscillation of length n + 2 in
t l ,... , tn-I> Xb Yb tn+l ·

Proolol Theorem 3. For n = 0 the statement is trivial.

n - 1 -= n. Let tPl ,... , tPn be defined as 10 Theorem 4 and
N := s(M) u i(P).
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Without loss of generality we assume that 11"'" In are such that the
induction hypothesis gives an integral representation (*) for <PI"'" <Pn
directly, i.e., without an additional linear transformation. So there exists a
strictly increasing hE F(N) such that, with J: = (inf h(N), sup h(N)), there
exist increasing W2 '00" Wn E C(J) and c E J such that <P I == 1 and

for x E N, j = 2'00" n.

Moreover, we make the induction hypothesis that h is "gap-preserving,"
i.e., the gaps in N are transformed into corresponding gaps in h(N) of equal
length. Let L I == 1 and

for pEJ, j=2,00., n,

so LjEC(J) and Ljoh=f/lj for j=2,00.,n. For j=O, 1,00.,n let vjEF(J) be
defined by

Vix) = !j(S-1 0 h -I(X))

=!j(i-Ioh-I(x))

for x E h(s(M))

for x E h(i(P)),

Vj continuous on J n h(N), and on every subinterval Q of .l\h(N) let vj be
constantly equal t~ its value in the left endpoint of Q. Clearly Vo, VI '00" Vn is
a nondegenerate normed weak Markov system on J.

From Lemma 5 follows that each VE V := span{Vo, VJ,'OO' Vn} has the
same continuity properties as vI' Let Vi = Vc + j be the decomposition of v I

where VcEC(J) and j is a saltus function on J with j(c)=O. Now let
k E F(J) be defined by

k(x)=x+j(x) for xEJ,

and K:= (inf k(J), sup k(J)).
For every g E F(J) which is piecewise monotone and bounded on every

compact interval of J, and is left-or right-continuous wherever VI is left-or
right-continuous, let g: K --+ IR be defined by:

g(x) = g(k -l(X)) for x E k(J),

g linear on every subinterval of K'\k(J), and g E C(K). So vo, Vi "00' vn exist
and form a nondegenerate normed weak Markov system on K. Also, we
note that for Z E C(J), on every subinterval of K'\k(J), z is constant, so
dz = O. Recalling Li, Wi E C(J) for i = 2'00" nand c = k(c) by definition of k,
we thus get

for t E K and i = 2'00" n.
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Besides, one checks that (D + vj)(t) = fit) holds almost everywhere with
respect to the measure induced by VI' So Lemma 5 yields

i5;(q) - vi( P) = r f;( t) dv I (t)
p

and therefore

for p, q E K and i = 1,..., n,

i= 1,..., n.

For xEM we have nx)=(vi0kohos)(x), i=0,1, ...,n, and setting
r = k °h °s, we get

i= 1,..., n,

i.e., an integral representation of the form (*).

Proof of Corollary 3. If A has property (B), the restnctIOns of
D + fl ,..., D + fn and D _ fl ,..., D _ fn to A form normed Markov systems
(the argument is completely analogous to the one used for Theorem 11.3(c)
in [10]). Thus, in the proof of Theorem 3, the functions ¢I,'''' ¢n form a
normed Markov system on s(A), and by induction hypothesis each
Wi I(h 0 sHAl is strictly increasing, i = 2,..., n. Vo, VI"'" Vn for a normed Markov
system on (hos)(A), so VI is strictly monotone. The same holds for VI on
r( M) = (k ° h ° s )(A ).
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